skip to main content


Search for: All records

Creators/Authors contains: "Lu, Albert"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. GaN-on-GaN vertical diode is a promising device for next-generation power electronics. Its breakdown voltage (BV) is limited by edge termination designs such as guard rings. The design space of guard rings is huge and it is difficult to optimize manually. In this paper, we propose an effective inverse design strategy to co-optimize BV and (V F Q) −1 , where BV, V F , and Q are the breakdown voltage, forward voltage, and reserve capacitive charge of the diode, respectively. Using rapid Technology Computer-Aided-Design (TCAD) simulations, neural network (NN), and Pareto front generation, a GaN-on-GaN diode is optimized within 24 hours. We can obtain structures with 200V higher BV at medium (V F Q) −1 or find a nearly ideal BV structure with 25% higher BV 2 /R on compared to the best randomly generated TCAD data. 
    more » « less
    Free, publicly-accessible full text available May 28, 2024
  2. In this paper, the short circuit ruggedness of Gallium Oxide (Ga 2 O 3 ) vertical FinFET is studied using Technology Computer-Aided-Design (TCAD) simulations. Ga 2 O 3 is an emerging ultra-wide bandgap material and Ga 2 O 3 vertical FinFET can achieve the normally-off operation for high voltage applications. Ga 2 O 3 has a relatively low thermal conductivity and, thus, it is critical to explore the design space of Ga 2 O 3 vertical FinFETs to achieve an acceptable short-circuit capability for power applications. In this study, appropriate TCAD models and parameters calibrated to experimental data are used. For the first time, the breakdown voltage simulation accuracy of Ga 2 O 3 vertical FinFETs is studied systematically. It is found that a background carrier generation rate between 10 5 cm −3 s −1 and 10 12 cm −3 s −1 is required in simulation to obtain correct results. The calibrated and robust setup is then used to study the short circuit withstand time (SCWT) of an 800 V-rated Ga 2 O 3 vertical FinFET with different inter-fin architectures. It is found that, due to the high thermal resistance in Ga 2 O 3 , to achieve an SCWT >1 μ s, low gate overdrive is needed which increases R on,sp by 66% and that Ga 2 O 3 might melt before the occurrence of thermal runaway. These results provide important guidance for developing rugged Ga 2 O 3 power transistors. 
    more » « less